Localization of Sphingolipid Enriched Plasma Membrane Regions and Long-Chain Base Composition during Mature-Fruit Abscission in Olive
نویسندگان
چکیده
Sphingolipids, found in membranes of eukaryotic cells, have been demonstrated to carry out functions in various processes in plant cells. However, the roles of these lipids in fruit abscission remain to be determined in plants. Biochemical and fluorescence microscopy imaging approach has been adopted to investigate the accumulation and distribution of sphingolipids during mature-fruit abscission in olive (Olea europaea L. cv. Picual). Here, a lipid-content analysis in live protoplasts of the olive abscission zone (AZ) was made with fluorescent dyes and lipid analogs, particularly plasma membrane sphingolipid-enriched domains, and their dynamics were investigated in relation to the timing of mature-fruit abscission. In olive AZ cells, the measured proportion of both polar lipids and sphingolipids increased as well as endocytosis was stimulated during mature-fruit abscission. Likewise, mature-fruit abscission resulted in quantitative and qualitative changes in sphingolipid long-chain bases (LCBs) in the olive AZ. The total LCB increase was due essentially to the increase of t18:1(8E) LCBs, suggesting that C-4 hydroxylation and Δ8 desaturation with a preference for (E)-isomer formation were quantitatively the most important sphingolipids in olive AZ during abscission. However, our results also showed a specific association between the dihydroxylated LCB sphinganine (d18:0) and the mature-fruit abscission. These results indicate a clear correlation between the sphingolipid composition and mature-fruit abscission. Moreover, measurements of endogenous sterol levels in the olive AZ revealed that it accumulated sitosterol and campesterol with a concomitant decrease in cycloartenol during abscission. In addition, underlying the distinct sterol composition of AZ during abscission, genes for key biosynthetic enzymes for sterol synthesis, for obtusifoliol 14α-demethylase (CYP51) and C-24 sterol methyltransferase2 (SMT2), were up-regulated during mature-fruit abscission, in parallel to the increase in sitosterol content. The differences found in AZ lipid content and the relationships established between LCB and sterol composition, offer new insights about sphingolipids and sterols in abscission.
منابع مشابه
Sphingolipid Distribution, Content and Gene Expression during Olive-Fruit Development and Ripening
Plant sphingolipids are involved in the building of the matrix of cell membranes and in signaling pathways of physiological processes and environmental responses. However, information regarding their role in fruit development and ripening, a plant-specific process, is unknown. The present study seeks to determine whether and, if so, how sphingolipids are involved in fleshy-fruit development and...
متن کاملPolyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission
After fruit ripening, many fruit-tree species undergo massive natural fruit abscission. Olive (Olea europaea L.) is a stone-fruit with cultivars such as Picual (PIC) and Arbequina (ARB) which differ in mature fruit abscission potential. Ethylene (ET) is associated with abscission, but its role during mature fruit abscission remains largely uncharacterized. The present study investigates the pos...
متن کاملEvaluation of Changes in Fatty Acid Composition in Three Different Varieties of Olives During the Course of Maturation
ABSTRACT: Olives belong to the family of olea europaea L. is a popular fruit tree. The fruit and the oil extracted from it is consumed worldwide particularly in the Mediterranean regions. In this study changes in the fatty acid composition of the oil extracted from olive fruit during the course of maturation is investigated. This work is concerned with the best harvesting point when oleic acid ...
متن کاملIsolation and characterization of a cDNA encoding a lipid transfer protein expressed in 'Valencia' orange during abscission.
The genetics and expression of a lipid transfer protein (LTP) gene was examined during abscission of mature fruit of 'Valencia' orange. A cDNA encoding an LTP, CsLTP, was isolated from a cDNA subtraction library constructed from mature fruit abscission zones 48 h after application of a mature fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-pyrazole (CMN-pyrazole). A full-length cDNA ...
متن کاملDefective CFTR increases synthesis and mass of sphingolipids that modulate membrane composition and lipid signaling.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) that affect protein structure and channel function. CFTR, localized in the apical membrane within cholesterol and sphingomyelin rich regions, is an ABC transporter that functions as a chloride channel. Here, we report that expression of defective CFTR (DeltaF508CFTR or decreased CFTR) in human lung ...
متن کامل